EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

A Data-Driven Approach to Refine Predictions of Differentiated Thyroid Cancer Outcomes: A Prospective Multicenter Study.

Authors

Grani, Giorgio; Gentili, Michele; Siciliano, Federico; Albano, Domenico; Zilioli, Valentina; Morelli, Silvia; Puxeddu, Efisio; Zatelli, Maria Chiara; Gagliardi, Irene; Piovesan, Alessandro; Nervo, Alice; Crocetti, Umberto; Massa, Michela; Samà, Maria Teresa; Mele, Chiara; Deandrea, Maurilio; Fugazzola, Laura; Puligheddu, Barbara; Antonelli, Alessandro; Rossetto, Ruth

Abstract

Context: The risk stratification of patients with differentiated thyroid cancer (DTC) is crucial in clinical decision making. The most widely accepted method to assess risk of recurrent/persistent disease is described in the 2015 American Thyroid Association (ATA) guidelines. However, recent research has focused on the inclusion of novel features or questioned the relevance of currently included features. Objective: To develop a comprehensive data-driven model to predict persistent/recurrent disease that can capture all available features and determine the weight of predictors. Methods: In a prospective cohort study, using the Italian Thyroid Cancer Observatory (ITCO) database (NCT04031339), we selected consecutive cases with DTC and at least early follow-up data (n = 4773; median follow-up 26 months; interquartile range, 12-46 months) at 40 Italian clinical centers. A decision tree was built to assign a risk index to each patient. The model allowed us to investigate the impact of different variables in risk prediction. Results: By ATA risk estimation, 2492 patients (52.2%) were classified as low, 1873 (39.2%) as intermediate, and 408 as high risk. The decision tree model outperformed the ATA risk stratification system: the sensitivity of high-risk classification for structural disease increased from 37% to 49%, and the negative predictive value for low-risk patients increased by 3%. Feature importance was estimated. Several variables not included in the ATA system significantly impacted the prediction of disease persistence/recurrence: age, body mass index, tumor size, sex, family history of thyroid cancer, surgical approach, presurgical cytology, and circumstances of the diagnosis. Conclusion: Current risk stratification systems may be complemented by the inclusion of other variables in order to improve the prediction of treatment response. A complete dataset allows for more precise patient clustering.

Subjects

THYROID cancer; CLINICAL trials

Publication

Journal of Clinical Endocrinology & Metabolism, 2023, Vol 108, Issue 8, p1921

ISSN

0021-972X

Publication type

Academic Journal

DOI

10.1210/clinem/dgad075

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved