EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Gossypol has anti-cancer effects by dual-targeting MDM2 and VEGF in human breast cancer.

Authors

Jing Xiong; Jiansha Li; Qin Yang; Jun Wang; Tiefen Su; Sheng Zhou; Xiong, Jing; Li, Jiansha; Yang, Qin; Wang, Jun; Su, Tiefen; Zhou, Sheng

Abstract

Background: Mouse double minute 2 (MDM2) and vascular endothelial growth factor (VEGF) are important molecules involved in tumor progression. We researched potential inhibitors that simultaneously target MDM2 and VEGF. In our recent study involving the performance of high-throughput screening with a fluorescence polarization assay, gossypol was identified as one of the top hits that inhibit protein-RNA binding activity. Because MDM2 is an RNA-binding protein and its targets include VEGF mRNA, we investigated whether gossypol has an inhibitory effect on MDM2-VEGF.Methods: UV cross-linking and RNA binding assay, isothermal titration calorimetry assay, and ubiquitination assay were performed to determine mechanisms by which gossypol functions as a dual inhibitor of MDM2 and VEGF. The effect of gossypol on MDM2 and VEGF expression, cancer cell apoptosis, tumor growth and VEGF-mediated angiogenesis were studied in vitro and in vivo in different human breast cancer models with a different p53 status.Results: We observed that gossypol inhibited expression of both MDM2 and VEGF in human breast cancer cells with either wild-type or mutant p53. A nechanistic study further demonstrated that, through disrupting the interaction between MDM2 protein and VEGF mRNA, gossypol induced MDM2 self-ubiquitination and decreased VEGF translation simultaneously, which resulted in both apoptosis and anti-angiogenesis effects. In vitro, regardless of p53 status, gossypol induced cancer cell apoptosis. In nude mouse xenograft in vivo models, gossypol suppressed tumor growth and VEGF-mediated angiogenesis.Conclusion: Gossypol has anti-cancer effects by dual-targeting MDM2 and VEGF in human breast cancer. Our study reveals a novel mechanism by which gossypol functions as an anticancer agent. We believe that MDM2-VEGF targeting represents a novel strategy for improving cancer outcome.

Subjects

GOSSYPOL; ANTINEOPLASTIC agents; VASCULAR endothelial growth factors; BREAST cancer treatment; CANCER invasiveness; PROTEIN metabolism; VASCULAR endothelial growth factor antagonists; HYDROCARBON metabolism; ANIMAL experimentation; APOPTOSIS; BIOCHEMISTRY; BIOLOGICAL models; BREAST tumors; CELL lines; GENES; HYDROCARBONS; PHENOMENOLOGY; METABOLISM; MICE; MOLECULAR structure; PROTEINS; RNA; CHEMICAL inhibitors; PHARMACODYNAMICS

Publication

Breast Cancer Research, 2017, Vol 19, p1

ISSN

1465-5411

Publication type

Academic Journal

DOI

10.1186/s13058-017-0818-5

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved