Works matching DE "GROBNER bases"


Results: 315
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11

    Modal operators and toric ideals.

    Published in:
    Journal of Logic & Computation, 2019, v. 29, n. 5, p. 577, doi. 10.1093/logcom/exz003
    By:
    • Camerlo, Riccardo;
    • Pistone, Giovanni;
    • Rapallo, Fabio
    Publication type:
    Article
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22

    Standard monomials for partitions.

    Published in:
    Acta Mathematica Hungarica, 2006, v. 111, n. 3, p. 193, doi. 10.1007/s10474-006-0049-1
    By:
    • Hegedűs, G.;
    • Rónyai, L.
    Publication type:
    Article
    23
    24
    25
    26
    27
    28
    29
    30
    31

    DEGREE UPPER BOUNDS FOR H-BASES.

    Published in:
    Le Matematiche, 2018, v. 73, n. 2, p. 383, doi. 10.4418/2018.73.2.9
    By:
    • HASHEMI, AMIR;
    • JAVANBAKHT, MASOUMEH;
    • MÖLLER, H. MICHAEL
    Publication type:
    Article
    32
    33
    34
    35

    DECODING OF DIFFERENTIAL AG CODES.

    Published in:
    Advances in Mathematics of Communications, 2016, v. 10, n. 2, p. 307, doi. 10.3934/amc.2016007
    By:
    • KWANKYU LEE
    Publication type:
    Article
    36

    ON THE IDEAL ASSOCIATED TO A LINEAR CODE.

    Published in:
    Advances in Mathematics of Communications, 2016, v. 10, n. 2, p. 229, doi. 10.3934/amc.2016003
    By:
    • MÁRQUEZ-CORBELLA, IRENE;
    • MARTÍNEZ-MORO, EDGAR;
    • SUÁREZ-CANEDO, EMILIO
    Publication type:
    Article
    37
    38
    39
    40
    41
    42
    43

    MONOMIAL S-SEQUENCES ARISING FROM GRAPH IDEALS.

    Published in:
    AAPP Physical, Mathematical & Natural Sciences / Atti della Accademia Peloritana dei Pericolanti: Classe di Scienze Fisiche, Matematiche e Naturali, 2023, v. 101, n. 2, p. 1, doi. 10.1478/AAPP.1012A15
    By:
    • IMBESI, MAURIZIO;
    • LA BARBIERA, MONICA
    Publication type:
    Article
    44

    ORACLE-SUPPORTED DRAWING OF THE GRÖBNER ESCALIER.

    Published in:
    AAPP Physical, Mathematical & Natural Sciences / Atti della Accademia Peloritana dei Pericolanti: Classe di Scienze Fisiche, Matematiche e Naturali, 2020, v. 98, n. 2, p. 1, doi. 10.1478/AAPP.982A3
    By:
    • ALONSO, MARIA EMILIA;
    • MARINARI, MARIA GRAZIA;
    • MORA, TEO
    Publication type:
    Article
    45
    46
    47
    48
    49
    50

    Metabelian Lie and perm algebras.

    Published in:
    Journal of Algebra & Its Applications, 2024, v. 23, n. 4, p. 1, doi. 10.1142/S0219498824500658
    By:
    • Mashurov, F. A.;
    • Sartayev, B. K.
    Publication type:
    Article