EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Characterisation of laser-produced tungsten plasma using optical spectroscopy method.

Authors

Kubkowska, M.; Gasior, P.; Rosinski, M.; Wolowski, J.; Sadowski, M. J.; Malinowski, K.; Skladnik-Sadowska, E.

Abstract

This paper describes results of spectroscopic investigation of laser-produced tungsten plasma. The laser intensity on the target surface reached up to 30 GW/cm2 depending on the focusing conditions. Optical spectra emitted from plasma plumes which were formed under vacuum conditions in front of the tungsten target due to the interaction of Nd-YAG laser pulses (1.06 μm, 0.5 J), were characterised by means of an optical spectrometer (λ/Δλ= 900) in the wavelength range from 300 to 1100 nm. The spectra were recorded automatically with the use of a CCD detector with exposition time varied from 100 ns to 50 ms. On the basis of WI and WII lines it was possible to estimate electron temperature and electron density which corresponded to the expansion phase of the plasma. Te and Ne were measured as 1.1 eV and 8×1016 cm-3, respectively. The spectra collected by the ion energy analyser showed that the plasma included tungsten ions up to 6 ion charge. Signals from the ion collector allowed to estimate the average value of ion energy of tungsten as 4.6 keV. Basing on this value the electron temperature corresponding to the initial stage of the plasma formation was estimated to be about 320 eV. Optical microscope investigation showed that laser irradiation caused structural changes on the surface of the target.

Subjects

PLASMA gases; MICROCLUSTERS; IONIZED gases; TUNGSTEN; PLASMA density

Publication

European Physical Journal D (EPJ D), 2010, Vol 54, Issue 2, p463

ISSN

1434-6060

Publication type

Academic Journal

DOI

10.1140/epjd/e2009-00090-0

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved