EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Exponential Bound for the Heating Rate of Periodically Driven Spin Systems.

Authors

Zobov, V. E.; Kucherov, M. M.

Abstract

For the nuclear spin system of a solid in the presence of an inhomogeneous magnetic field, we have found a rigorous bound for the heating rate of the system under the action of a high-frequency magnetic field, which is applied, for example, to create effective Hamiltonians. We consider the autocorrelation function (ACF) of a spin rotating in a local field whose fluctuations are specified by a Gaussian random process. The correlation function of a random field is taken as the sum of a static inhomogeneous contribution and a time-dependent contribution expressed self-consistently via the spin ACF. The ACF singularities on the imaginary time axis whose coordinates determine the exponents of exponential asymptotics in the high-frequency domain are investigated. The dependences of the coordinates on field inhomogeneity for various approximations have been derived. The wing of the ACF spectrum in the cumulant approximation is shown to serve as a rigorous upper bound for the wing of the ACF spectrum and, consequently, for the heating rate of the system when subjected to variable magnetic fields. We have established that randomly distributed inhomogeneous magnetic fields increase the wings of the ACF spectra and, thus, speed up the system's heating.

Subjects

MAGNETIC fields; RANDOM fields; NUCLEAR spin; STOCHASTIC processes; GAUSSIAN processes; EXPONENTIAL sums; ROBUST control

Publication

Journal of Experimental & Theoretical Physics, 2019, Vol 128, Issue 4, p641

ISSN

1063-7761

Publication type

Academic Journal

DOI

10.1134/S1063776119030130

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved