We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Vanoxerine: Cellular Mechanism of a New Antiarrhythmic.
- Authors
LACERDA, ANTONIO E.; KURYSHEV, YURI A.; YAN, GAN‐XIN; WALDO, ALBERT L.; BROWN, ARTHUR M.
- Abstract
Cellular Electrophysiology of Vanoxerine. Introduction: There remains an unmet need for safe and effective antiarrhythmic drugs, especially for the treatment of atrial fibrillation. Vanoxerine is a drug that is free of adverse cardiac events in normal volunteers, yet is a potent blocker of the hERG (hKv11.1) cardiac potassium channel. Consequently,we hypothesized that vanoxerine might also be a potent blocker of cardiac calcium (Ca) and sodium (Na) currents, and would not affect transmural dispersion of repolarization. Methods: The whole cell patch clamp technique was used to measure currents from cloned ion channels overexpressed in stable cell lines and single ventricular myocytes. We measured intracellular action potentials from canine ventricular wedges and Purkinje fibers using sharp microelectrode technique. Results: We found that vanoxerine was a potent hKv11.1 blocker, and at submicromolar concentrations, it blocked Ca and Na currents in a strongly frequency-dependent manner. In the canine ventricular wedge preparation vanoxerine did not significantly affect transmural action potential waveforms, QT interval or transmural dispersion of repolarization. Conclusions: Vanoxerine (1) is a potent blocker of cardiac hERG, Na and Ca channels; (2) block is strongly frequency-dependent especially for Na and Ca channels; and (3) transmural dispersion of ventricular repolarization is unaffected. The multichannel block and repolarization uniformity resemble the effects of amiodarone, the exemplar atrial fibrillation drug. Vanoxerine is a completely different chemical and has none of amiodarone's toxic effects. Vanoxerine has characteristics of a potentially effective and safe antiarrhythmic.
- Subjects
PIPERAZINE; MYOCARDIAL depressants; ELECTRIC properties of cell membranes; ELECTROPHYSIOLOGY; DRUG efficacy; PURKINJE cells; PHYSIOLOGY; THERAPEUTICS
- Publication
Journal of Cardiovascular Electrophysiology, 2010, Vol 21, Issue 3, p301
- ISSN
1045-3873
- Publication type
Academic Journal
- DOI
10.1111/j.1540-8167.2009.01623.x