EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Differentiation of metallicolous and non-metallicolous Salix caprea populations based on phenotypic characteristics and nuclear microsatellite (SSR) markers.

Authors

PUSCHENREITER, MARKUS; TÜRKTAŞ, MINE; SOMMER, PETER; WIESHAMMER, GERLINDE; LAAHA, GREGOR; WENZEL, WALTER W.; HAUSER, MARIE-THERES

Abstract

The Salicaceae family comprises a large number of high-biomass species with remarkable genetic variability and adaptation to ecological niches. Salix caprea survives in heavy metal contaminated areas, translocates and accumulates Zn/Cd in leaves. To reveal potential selective effects of long-term heavy metal contaminations on the genetic structure and Zn/Cd accumulation capacity, 170 S. caprea isolates of four metal-contaminated and three non-contaminated middle European sites were analysed with microsatellite markers using Wright's F statistics. The differentiation of populations North of the Alps are more pronounced compared to the Southern ones. By grouping the isolates based on their contamination status, a weak but significant differentiation was calculated between Northern metallicolous and non-metallicolous populations. To quantify if the contamination and genetic status of the populations correlate with Zn/Cd tolerance and the accumulation capacity, the S. caprea isolates were exposed to elevated Cd/Zn concentrations in perlite-based cultures. Consistent with the genetic data nestedanova analyses for the physiological traits find a significant difference in the Cd accumulation capacity between the Northern and Southern populations. Our data suggest that natural populations are a profitable source to uncover genetic mechanisms of heavy metal accumulation and biomass production, traits that are essential for improving phytoextraction strategies.

Subjects

SALICACEAE; MICROSATELLITE repeats; SOIL pollution; HEAVY metals; PHENOTYPES

Publication

Plant, Cell & Environment, 2010, Vol 33, Issue 10, p1641

ISSN

0140-7791

Publication type

Academic Journal

DOI

10.1111/j.1365-3040.2010.02170.x

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved