We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX.
- Authors
Fernando, Denise R.; Batianoff, George N.; Baker, Alan J.; Woodrow, Ian E.
- Abstract
Gossia bidwillii (Myrtaceae) is a manganese (Mn)-hyperaccumulating tree native to subtropical eastern Australia. It typically contains foliar Mn levels in excess of 1% dry weight. However, in G. bidwillii and other Mn-hyperaccumulating species, the cellular and subcellular localization of Mn has not been measured. Quantitative in vivo cryo-scanning electron microscopy (SEM)/energy dispersive X-ray analysis (EDAX) was used to localize Mn and other elements in tissue collected from mature trees growing in a natural population. Cryo-SEM showed that the leaf mesophyll is differentiated as a double-layer palisade mesophyll above spongy mesophyll. Transmission electron microscopy (TEM) revealed that the palisade and epidermal cells are highly vacuolated. EDAX data were used to estimate in situ vacuolar Mn concentrations of all cell types in fresh cryo-fixed leaf tissues. The highest average vacuolar Mn concentration of over 500 mm was found in the upper-layer palisade mesophyll, while the lowest concentration of around 100 mm was found in the spongy mesophyll. Qualitative in vivo cryo-SEM/EDAX was employed to further investigate the spatial distribution of Mn in fresh leaf tissues and young bark tissue, which was also found to have a high Mn concentration. It is concluded that Mn distribution in G. bidwillii is quantitatively different to metal distribution in other hyperaccumulating species where the highest localized concentrations of these elements occur in non-photosynthetic tissues such as epidermal cells and associated dermal structures including trichomes and leaf hairs.
- Subjects
AUSTRALIA; MANGANESE; MYRTACEAE; TREES; PLANT cells & tissues; TRICHOMES; PLANT anatomy; SCANNING electron microscopy; TRANSMISSION electron microscopy
- Publication
Plant, Cell & Environment, 2006, Vol 29, Issue 5, p1012
- ISSN
0140-7791
- Publication type
Academic Journal
- DOI
10.1111/j.1365-3040.2006.01498.x