EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Auxiliary information resolution effects on small area estimation in plantation forest inventory.

Authors

Green, P Corey; Burkhart, Harold E; Coulston, John W; Radtke, Philip J; Thomas, Valerie A

Abstract

In forest inventory, traditional ground-based resource assessments are often expensive and time-consuming forcing managers to reduce sample sizes to meet budgetary and logistical constraints. Small area estimation (SAE) is a class of statistical estimators that uses a combination of traditional survey data and linearly related auxiliary information to improve estimate precision. These techniques have been shown to improve the precision of stand-level inventory estimates in loblolly pine plantations using lidar height percentiles and thinning status as covariates. In this study, the effects of reduced lidar point-cloud densities and lower digital elevation model (DEM) spatial resolutions were investigated for total planted volume estimates using area-level SAE models. In the managed Piedmont pine plantation conditions evaluated, lower lidar point-cloud densities and DEM spatial resolutions were found to have minimal effects on estimates and precision. The results of this study are promising to those interested in incorporating SAE methods into forest inventory programs.

Subjects

FOREST surveys; TREE farms; LOBLOLLY pine; DIGITAL elevation models

Publication

Forestry: An International Journal of Forest Research, 2020, Vol 93, Issue 5, p685

ISSN

0015-752X

Publication type

Academic Journal

DOI

10.1093/forestry/cpaa012

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved