EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Deep learning-based automatic blood pressure measurement: evaluation of the effect of deep breathing, talking and arm movement.

Authors

Pan, Fan; He, Peiyu; Chen, Fei; Pu, Xiaobo; Zhao, Qijun; Zheng, Dingchang

Abstract

Objectives: It is clinically important to evaluate the performance of a newly developed blood pressure (BP) measurement method under different measurement conditions. This study aims to evaluate the performance of using deep learning-based method to measure BPs and BP change under non-resting conditions. Materials and methods: Forty healthy subjects were studied. Systolic and diastolic BPs (SBPs and DBPs) were measured under four conditions using deep learning and manual auscultatory method. The agreement between BPs determined by the two methods were analysed under different conditions. The performance of using deep learning-based method to measure BP changes was finally evaluated. Results: There were no significant BPs differences between two methods under all measurement conditions (all p >.1). SBP and DBP measured by deep learning method changed significantly in comparison with the resting condition: decreased by 2.3 and 4.2 mmHg with deeper breathing (both p .4, except for SBP change with deeper breathing). Conclusion: This study demonstrated that the deep learning method could achieve accurate BP measurement under both resting and non-resting conditions. Accurate and reliable blood pressure measurement is clinically important. We evaluated the performance of our developed deep learning-based blood pressure measurement method under resting and non-resting measurement conditions. The deep learning-based method could achieve accurate BP measurement under both resting and non-resting measurement conditions.

Subjects

BLOOD pressure measurement; DEEP learning; RESPIRATION; BLOOD pressure; AUTOMATICITY (Learning process)

Publication

Annals of Medicine, 2019, Vol 51, Issue 7/8, p397

ISSN

0785-3890

Publication type

Academic Journal

DOI

10.1080/07853890.2019.1694170

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved