Summary: Although experimental evidence for distributed cell assemblies is growing, theories of cell assemblies are still marginalized in theoretical neuroscience. We argue that this has to do with shortcomings of the currently best understood assembly theories, the ones based on formal associative memory models. These only insufficiently reflect anatomical and physiological properties of nervous tissue, and their functionality is too restricted to provide a framework for cognitive modeling. We describe cell assembly models that integrate more neurobiological constraints and review results from simulations of a simple nonlocal associative network formed by a reciprocal topographic projection. Impacts of nonlocal associative projections in the brain are discussed with respect to the functionality they can explain.