EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Towards a new friction model for shallow water equations through an interactive viscous layer.

Authors

James, François; Lagrée, Pierre-Yves; Le, Minh H.; Legrand, Mathilde

Abstract

The derivation of shallow water models from Navier–Stokes equations is revisited yielding a class of two-layer shallow water models. An improved velocity profile is proposed, based on the superposition of an inviscid fluid and a viscous layer inspired by the Interactive Boundary Layer interaction used in aeronautics. This leads to a new friction law which depends not only on velocity and depth but also on the variations of velocity and thickness of the viscous layer. The resulting system is an extended shallow water model consisting of three depth-integrated equations: the first two are mass and momentum conservation in which a slight correction on hydrostatic pressure has been made; the third one, known as von Kármán equation, describes the evolution of the viscous layer. This coupled model is shown to be conditionally hyperbolic, and a Godunov-type finite volume scheme is also proposed. Several numerical examples are provided and compared to the Multi-Layer Saint-Venant model. They emphasize the ability of the model to deal with unsteady viscous effects. They illustrate also the phase-lag between friction and topography, and even recover possible reverse flows.

Subjects

NAVIER-Stokes equations; SHALLOW-water equations; COMPUTER simulation; BOUNDARY value problems; PARTIAL differential equations

Publication

ESAIM: Mathematical Modelling & Numerical Analysis (ESAIM: M2AN), 2019, Vol 53, Issue 1, p269

ISSN

2822-7840

Publication type

Academic Journal

DOI

10.1051/m2an/2018076

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved