We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Stability, dissolution, and cytotoxicity of NaYF<sub>4</sub>-upconversion nanoparticles with different coatings.
- Authors
Bastos, Verónica; Oskoei, Párástu; Andresen, Elina; Saleh, Maysoon I.; Rühle, Bastian; Resch-Genger, Ute; Oliveira, Helena
- Abstract
Upconversion nanoparticles (UCNPs) have attracted considerable attention owing to their unique photophysical properties. Their utilization in biomedical applications depends on the understanding of their transformations under physiological conditions and their potential toxicity. In this study, NaYF4:Yb,Er UCNPs, widely used for luminescence and photophysical studies, were modified with a set of four different coordinatively bound surface ligands, i.e., citrate, alendronate (AA), ethylendiamine tetra(methylene phosphonate) (EDTMP), and poly(maleic anhydride-alt-1-octadecene) (PMAO), as well as silica coatings with two different thicknesses. Subsequently, the aging-induced release of fluoride ions in water and cell culture media and their cytotoxic profile to human keratinocytes were assessed in parallel to the cytotoxic evaluation of the ligands, sodium fluoride and the lanthanide ions. The cytotoxicity studies of UCNPs with different surface modifications demonstrated the good biocompatibility of EDTMP-UCNPs and PMAO-UCNPs, which is in line with the low amount of fluoride ions released from these samples. An efficient prevention of UCNP dissolution and release of cytotoxic ions, as well as low cytotoxicity was also observed for UCNPs with a sufficiently thick silica shell. Overall, our results provide new insights into the understanding of the contribution of surface chemistry to the stability, dissolution behavior, and cytotoxicity of UCNPs. Altogether, the results obtained are highly important for future applications of UCNPs in the life sciences and bioimaging studies.
- Subjects
SODIUM fluoride; SURFACE chemistry; SURFACE coatings; LIFE sciences; SURFACE stability; NANOPARTICLES; PHOSPHONATES
- Publication
Scientific Reports, 2022, Vol 12, Issue 1, p1
- ISSN
2045-2322
- Publication type
Academic Journal
- DOI
10.1038/s41598-022-07630-5