EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Empagliflozin maintains capillarization and improves cardiac function in a murine model of left ventricular pressure overload.

Authors

Nakao, Masaaki; Shimizu, Ippei; Katsuumi, Goro; Yoshida, Yohko; Suda, Masayoshi; Hayashi, Yuka; Ikegami, Ryutaro; Hsiao, Yung Ting; Okuda, Shujiro; Soga, Tomoyoshi; Minamino, Tohru

Abstract

Patients with type 2 diabetes treated with Sodium glucose transporter 2 (SGLT2) inhibitors show reduced mortality and hospitalization for heart failure (HF). SGLT2 inhibitors are considered to activate multiple cardioprotective pathways; however, underlying mechanisms are not fully described. This study aimed to elucidate the underlying mechanisms of the beneficial effects of SGLT2 inhibitors on the failing heart. We generated a left ventricular (LV) pressure overload model in C57BL/6NCrSlc mice by transverse aortic constriction (TAC) and examined the effects of empagliflozin (EMPA) in this model. We conducted metabolome and transcriptome analyses and histological and physiological examinations. EMPA administration ameliorated pressure overload-induced systolic dysfunction. Metabolomic studies showed that EMPA increased citrulline levels in cardiac tissue and reduced levels of arginine, indicating enhanced metabolism from arginine to citrulline and nitric oxide (NO). Transcriptome suggested possible involvement of the insulin/AKT pathway that could activate NO production through phosphorylation of endothelial NO synthase (eNOS). Histological examination of the mice showed capillary rarefaction and endothelial apoptosis after TAC, both of which were significantly improved by EMPA treatment. This improvement was associated with enhanced expression phospho-eNOS and NO production in cardiac endothelial cells. NOS inhibition attenuated these cardioprotective effects of EMPA. The in vitro studies showed that catecholamine-induced endothelial apoptosis was inhibited by NO, arginine, or AKT activator. EMPA activates the AKT/eNOS/NO pathway, which helps to suppress endothelial apoptosis, maintain capillarization and improve systolic dysfunction during LV pressure overload.

Subjects

EMPAGLIFLOZIN; HEART function tests; ANIMAL models in research; GLUCOSE transporters; HOSPITAL care; HEART failure

Publication

Scientific Reports, 2021, Vol 11, Issue 1, p1

ISSN

2045-2322

Publication type

Academic Journal

DOI

10.1038/s41598-021-97787-2

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved