We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
A pH-sensitive nanocarrier based on BSA-stabilized graphene-chitosan nanocomposite for sustained and prolonged release of anticancer agents.
- Authors
Gooneh-Farahani, Sahar; Naghib, Seyed Morteza; Naimi-Jamal, M. Reza; Seyfoori, Amir
- Abstract
Smart nanomaterials with stimuli-responsive behavior are considered as promising platform for various drug delivery applications. Regarding their specific conditions, such as acidic pH, drug carriers to treatment of tumor microenvironment need some criteria to enhance drug delivery efficiency. In this study, for the first time, pH-sensitive BSA-stabilized graphene (BSG)/chitosan nanocomposites were synthesized through electrostatic interactions between the positively charged chitosan nanoparticles and negatively charged BSG and used for Doxorubicin (DOX) encapsulation as a general anticancer drug. Physicochemical characterization of the nanocomposites with different concentrations of BSG (0.5, 2, and 5wt%) showed effective decoration of chitosan nanoparticles on BSG. Comparing DOX release behavior from the nanocomposites and free BSG-chitosan nanoparticles were evaluated at two pHs of 7.4 and 4.5 in 28 days. It was shown that the presence of BSG significantly reduced the burst release observed in chitosan nanoparticles. The nanocomposite of 2wt% BSG was selected as the optimal nanocomposite with a release of 84% in 28 days and with the most uniform release in 24 h. Furthermore, the fitting of release data with four models including zero-order, first-order, Higuchi, and Korsmeyer-Peppas indicated that the addition of BSG changed the release mechanism of the drug, enabling uniform release for the optimal nanocomposite in first 24 h, compared to that for pure chitosan nanoparticles. This behavior was proved using metabolic activity assay of the SKBR-3 breast cancer cell spheroids exposed to DOX release supernatant at different time intervals. It was also demonstrated that DOX released from the nanocomposite had a significant effect on the suppression of cancer cell proliferation at acidic pH.
- Subjects
NANOCOMPOSITE materials; GRAPHENE; CHITOSAN; ANTINEOPLASTIC agents; HYDROGEN-ion concentration
- Publication
Scientific Reports, 2021, Vol 11, Issue 1, p1
- ISSN
2045-2322
- Publication type
Academic Journal
- DOI
10.1038/s41598-021-97081-1