We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Engineered hypoxia-responsive albumin nanoparticles mediating mitophagy regulation for cancer therapy.
- Authors
Wang, Wenyan; Yao, Shun-Yu; Luo, Jingjing; Ding, Chendi; Huang, Qili; Yang, Yao; Shi, Zhaoqing; Lin, Jiachan; Pan, Yu-Chen; Zeng, Xiaowei; Guo, Dong-Sheng; Chen, Hongzhong
- Abstract
Hypoxic tumors present a significant challenge in cancer therapy due to their ability to adaptation in low-oxygen environments, which supports tumor survival and resistance to treatment. Enhanced mitophagy, the selective degradation of mitochondria by autophagy, is a crucial mechanism that helps sustain cellular homeostasis in hypoxic tumors. In this study, we develop an azocalix[4]arene-modified supramolecular albumin nanoparticle, that co-delivers hydroxychloroquine and a mitochondria-targeting photosensitizer, designed to induce cascaded oxidative stress by regulating mitophagy for the treatment of hypoxic tumors. These nanoparticles are hypoxia-responsive and release loaded guest molecules in hypoxic tumor cells. The released hydroxychloroquine disrupts the mitophagy process, thereby increasing oxidative stress and further weakening the tumor cells. Additionally, upon laser irradiation, the photosensitizer generates reactive oxygen species independent of oxygen, inducing mitochondria damage and mitophagy activation. The dual action of simultaneous spatiotemporal mitophagy activation and mitophagy flux blockade results in enhanced autophagic and oxidative stress, ultimately driving tumor cell death. Our work highlights the effectiveness of hydroxychloroquine-mediated mitophagy blockade combined with mitochondria-targeted photosensitizer for cascade-amplified oxidative stress against hypoxic tumors. Enhanced mitophagy has been recognized as crucial mechanism to sustain cellular homeostasis in hypoxic tumors. Here, this group fabricates an azocalix[4]arene-modified supramolecular albumin nanoparticle codelivering hydroxychloroquine (HCQ) and sulfur-substituted methylated nile blue analog, capable of inducing cascaded oxidative stress via regulating mitophagy for hypoxic tumors treatment.
- Subjects
MEDICAL sciences; LIFE sciences; REACTIVE oxygen species; OXIDATIVE stress; CYTOLOGY
- Publication
Nature Communications, 2025, Vol 16, Issue 1, p1
- ISSN
2041-1723
- Publication type
Academic Journal
- DOI
10.1038/s41467-025-55905-y