We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery.
- Authors
Wang, Wei; Chen, Kepan; Jiang, Ting; Wu, Yiyang; Wu, Zheng; Ying, Hang; Yu, Hang; Lu, Jing; Lin, Jinzhong; Ouyang, Defang
- Abstract
Lipid nanoparticles (LNPs) have proven effective in mRNA delivery, as evidenced by COVID-19 vaccines. Its key ingredient, ionizable lipids, is traditionally optimized by inefficient and costly experimental screening. This study leverages artificial intelligence (AI) and virtual screening to facilitate the rational design of ionizable lipids by predicting two key properties of LNPs, apparent pKa and mRNA delivery efficiency. Nearly 20 million ionizable lipids were evaluated through two iterations of AI-driven generation and screening, yielding three and six new molecules, respectively. In mouse test validation, one lipid from the initial iteration, featuring a benzene ring, demonstrated performance comparable to the control DLin-MC3-DMA (MC3). Notably, all six lipids from the second iteration equaled or outperformed MC3, with one exhibiting efficacy akin to a superior control lipid SM-102. Furthermore, the AI model is interpretable in structure-activity relationships. Ionizable lipid optimization is essential for mRNA therapy via lipid nanoparticle, but experimental screening is investment-intensive. Here, authors developed AI models achieving the rational design of lipid molecules and fast high-throughput screening.
- Subjects
VIRTUAL high-throughput screening (Drug development); HIGH throughput screening (Drug development); STRUCTURE-activity relationships; COVID-19 vaccines; ARTIFICIAL intelligence
- Publication
Nature Communications, 2024, Vol 15, Issue 1, p1
- ISSN
2041-1723
- Publication type
Academic Journal
- DOI
10.1038/s41467-024-55072-6