We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Higher skeletal muscle mitochondrial oxidative capacity is associated with preserved brain structure up to over a decade.
- Authors
Tian, Qu; Greig, Erin E.; Davatzikos, Christos; Landman, Bennett A.; Resnick, Susan M.; Ferrucci, Luigi
- Abstract
Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, kPCr) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter. Higher kPCr is also associated with less microstructural integrity decline in white matter around cingulate, including superior longitudinal fasciculus, corpus callosum, and cingulum. Higher in vivo muscle oxidative capacity is associated with preserved brain structure up to over a decade, particularly in areas important for cognition, motor function, and sensorimotor integration. Higher mitochondrial oxidative phosphorylation assessed in skeletal muscle through non-invasive MR spectroscopy predicts less brain atrophy and microstructural deterioration in community-dwelling adults.
- Subjects
CORPUS callosum; MEDICAL sciences; WHITE matter (Nerve tissue); CEREBRAL atrophy; ALZHEIMER'S disease; SENSORIMOTOR cortex; GRAY matter (Nerve tissue)
- Publication
Nature Communications, 2024, Vol 15, Issue 1, p1
- ISSN
2041-1723
- Publication type
Academic Journal
- DOI
10.1038/s41467-024-55009-z