EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

A General Alternative Procedure for Solving Negative Degree of Difficulty Problems in Geometric Programming.

Authors

Alejandre, J.L.; Allueva, Ana; Gonzalez, Jose

Abstract

The degree of difficulty is an important concept in classical geometric programming theory. The dual problem is often infeasible when the degree of difficulty is negative and little has been published on this topic. In this paper, an alternative procedure is developed to find the optimal solution for the posynomial geometric programming problem with a negative degree of difficulty. First an equivalent problem was constructed with a positive degree of difficulty and the general posynomial geometric programming problem was solved using an original method previously developed by the authors. This method avoids the difficulty of non-differentiability of the dual objective function in the classical methods classified as dual. It also avoids the problem that appears when the feasible region for the dual problem is formed by an inconsistent system of linear equations.

Subjects

GEOMETRIC programming; PROBLEM solving; FEASIBILITY studies; LINEAR equations; NONLINEAR systems; COMBINATORIAL optimization; ALGORITHMS

Publication

Computational Optimization & Applications, 2004, Vol 27, Issue 1, p83

ISSN

0926-6003

Publication type

Academic Journal

DOI

10.1023/B:COAP.0000004981.17496.9c

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved