Works matching IS 00049727 AND DT 1988 AND VI 38 AND IP 1
1
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 159, doi. 10.1017/S0004972700027398
- Article
2
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 157, doi. 10.1017/S0004972700027386
- Article
3
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 153, doi. 10.1017/S0004972700027374
- Article
4
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 151, doi. 10.1017/S0004972700027362
- Article
5
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 141, doi. 10.1017/S0004972700027350
- Article
6
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 131, doi. 10.1017/S0004972700027349
- Article
7
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 125, doi. 10.1017/S0004972700027337
- Article
8
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 113, doi. 10.1017/S0004972700027325
- Article
9
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 105, doi. 10.1017/S0004972700027313
- Cleary, Joan;
- Morris, Sidney A.
- Article
10
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 99, doi. 10.1017/S0004972700027301
- Article
11
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 95, doi. 10.1017/S0004972700027295
- Article
12
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 93, doi. 10.1017/S0004972700027283
- Article
13
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 87, doi. 10.1017/S0004972700027271
- Article
14
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 83, doi. 10.1017/S000497270002726X
- Article
15
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 77, doi. 10.1017/S0004972700027258
- Article
16
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 67, doi. 10.1017/S0004972700027246
- Article
17
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 57, doi. 10.1017/S0004972700027234
- Article
18
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 55, doi. 10.1017/S0004972700027222
- Article
19
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 41, doi. 10.1017/S0004972700027210
- Article
20
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 31, doi. 10.1017/S0004972700027209
- Article
21
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 23, doi. 10.1017/S0004972700027192
- Article
22
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 19, doi. 10.1017/S0004972700027180
- Article
23
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 11, doi. 10.1017/S0004972700027179
- Article
24
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. 1, doi. 10.1017/S0004972700027167
- Article
25
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. b1, doi. 10.1017/S0004972700027155
- Article
26
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 1, p. f1, doi. 10.1017/S0004972700027143
- Article