We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
"In vitro antimicrobial and synergistic effect of fermented Indian zebu (Sahiwal) cow colostrum whey derived peptides with Lactobacillus rhamnosus against pathogenic bacteria".
- Authors
Iram, Daraksha; Sansi, Manish Singh; Meena, Sunita; Puniya, Anil Kumar; Vij, Shilpa
- Abstract
Bioactive peptides (BAPs) have been found to promote health through various mechanisms. Among them, antimicrobial peptides are gaining recognition as promising novel treatments. This study aims to generate BAPs from bovine colostrum whey using the proteolytic activity of Lactobacillus rhamnosus C25 and to evaluate their potential antibacterial efficacy, including their ability to synergistic efficacy against resistant bacteria. Bioactive peptides were successfully generated from lactobacillus culture proteases that were cultivated through batch fermentation. The resulting peptide fractions were then evaluated for their antibacterial efficacy against a selection of strains, including E. coli ATCC25922, S. aureus MTCC1144, Acinetobacter baumannii ATCC 17978, as well as clinically isolated resistant strains of E. coli (ESBL 1384), Acinetobacter 1379, and S. aureus (MRSA 1418). Notably, the peptide fractions with a molecular weight of < 10 kDa (0–10 kDa) significantly increased the membrane permeability of both E. coli (70.30 ± 0.41%) and S. aureus (63.04 ± 0.31%) as assessed by the crystal violet assay. The checkerboard method was utilized to perform synergistic tests with peptides and antibiotics. The peptide fractions with a molecular weight of (< 10 kDa) demonstrated synergistic effects with several antibiotics, including gentamycin, Rifampicin, Levofloxacin, Ciprofloxacin, and Chloramphenicol, against the resistant ESBL 1384 strain, as indicated by ΣFICI values of 0.55, 0.53, 0.52, 0.54, and 0.52, respectively. Furthermore, the HT-29 cell line remained completely unaffected by both peptide fractions. These findings suggest that the < 10 kDa peptide fraction possesses significant antibacterial efficacy against both reference and ESBL 1384 resistant bacterial strain. Additionally, both MRSA 1418 and Acinetobacter 1379 displayed resistance to all fractions tested. To summarize the findings of this study, colostrum whey peptides with a broad spectrum of antimicrobial activity can be efficiently produced through fermentation. This method could prove valuable for both the pharmaceutical and food industries.
- Publication
Journal of Food Science & Technology, 2023, Vol 60, Issue 10, p2568
- ISSN
0022-1155
- Publication type
Academic Journal
- DOI
10.1007/s13197-023-05776-2