We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Investigating the Bioaccessibility and Bioavailability of Cadmium in a Cooked Rice Food Matrix by Using an 11-Day Rapid Caco-2/HT-29 Co-culture Cell Model Combined with an In Vitro Digestion Model.
- Authors
Lv, Qian; He, Qiang; Wu, Yue; Chen, Xi; Ning, Yali; Chen, Yan
- Abstract
Investigating the bioaccessibility and bioavailability of Cd based on real contaminated cooked rice matrixes helps establish an accurate risk assessment method and effectively reduce the digestion and absorption of Cd. An 11-day in vitro rapid Caco-2/HT-29 co-culture cell model was used to establish and evaluate the simulation of the absorption and transport of Cd in the small intestine with a 70:30 Caco-2/HT-29 co-culture ratio and 1.0 mmol L−1 butyric acid as a differentiation inducer. The bioaccessibility and bioavailability of Cd in cooked rice were studied using the cell model combined with an in vitro digestion model. The bioaccessibility of Cd of each of the three cooked rice samples was significantly higher in the gastric phase (59.04–80.23%) than in the gastrointestinal phase (37.14–52.93%). Despite the extension of the digestion time of the gastrointestinal phase, no significant difference was found among the time points. Results demonstrated that the amount of undigested residue, not the level of Cd contamination, significantly contributed to the bioaccessibility of Cd, which was affected by pH or ion. The absorption rate of Cd (25.08% ± 3.05%) was greater than the values obtained using the pure Caco-2 cell models. The bioavailability of Cd (8.29% ± 1.95%) was almost similar to that of Zn2+ (6.66% ± 1.41%) in the cooked rice matrix, indicating that the intestinal epithelium expressed a strong absorptive capacity of Cd during the absorption of essential metallic elements. The 11-day rapid Caco-2/HT-29 co-culture cell model combined with the in vitro digestion model was an efficient tool for studying the bioaccessibility and bioavailability of Cd or other substances in a food matrix to further investigate mechanistic steps and screen a broad set of food matrix factors.
- Subjects
BIOAVAILABILITY; DIGESTION; RICE; METALS; CADMIUM; BUTYRIC acid
- Publication
Biological Trace Element Research, 2019, Vol 190, Issue 2, p336
- ISSN
0163-4984
- Publication type
Academic Journal
- DOI
10.1007/s12011-018-1554-0