We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
The Anti-candidal and Absorbtion Performance of PVA/PVP-Based Jania rubens Hydrogel on Candida tropicalis and Some Physicochemical Properties of the Hydrogel.
- Authors
Boran, Meltem; Eliuz, Elif Erdogan; Ayas, Deniz
- Abstract
This study was aimed to create a bioactive hydrogel form with PVA/PVP (polyvinyl alcohol/poly(N-vinylpyrrolidone) polymer using acetone and ethanol extractions of Janiarubens red algae and investigate some pharmaceutical properties. The anti-candidal activity and some inhibition performance of J. rubens/PVA/PVP hydrogel were investigated on Candida tropicalis which is one of the important causes of bloodstream infections. The physicochemical properties of J. rubens/PVA/PVP hydrogel were revealed using FTIR and swelling-absorption tests. The volatile compounds of J. rubens extracts were examined by GCMS. By mixing the extracts in equal proportions, PVA/PVP-based hydrogel was prepared. According to the results, Cumulative Drug Release was stable at 25 °C for the first 5 h. The IZ (inhibition zone) and MIC (minimum inhibitory concentration) of J. rubens/PVA/PVP hydrogel were 9.01 mm and 80.20 mg/mL, respectively. It was found that logarithmic reduction and percent reduction were seen as 1.5 CFU/mL and 97.5%, respectively, on C. tropicalis exposed to J. rubens/PVA/PVP hydrogel in the first 5 min of the incubation. After exposure of C. tropicalis to J. rubens/PVA/PVP, the number of viable cells transferred from the gel to water was between 76.1 and 73.1% in high glucose medium, while it was between 92.2 and 80.8% for the PVA/PVP hydrogel under the same conditions. As a result, PVA/PVP hydrogel was made bioactive with J. rubens extracts for the first time in this study, and its potential for use as a functional anticandidal hydrogel on C.tropicalis has been demonstrated.
- Subjects
CANDIDA tropicalis; RED algae; POLYMERS; ACETONE; GLUCOSE; POLYVINYL alcohol
- Publication
Applied Biochemistry & Biotechnology, 2024, Vol 196, Issue 12, p8848
- ISSN
0273-2289
- Publication type
Academic Journal
- DOI
10.1007/s12010-024-04997-1