We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Water dispersal as an additional pathway to invasions by the primarily wind-dispersed tree Ailanthus altissima.
- Authors
Kowarik, Ingo; Säumel, Ina
- Abstract
Long-distance dispersal is a key process in biological invasions. Previous research has emphasized the role of nonstandard dispersal vectors, but consequences of a change in dispersal vector for the establishment of invasive plant species have received less attention. We analyzed how water-mediated dispersal rather than the more expected wind-mediated dispersal can affect the establishment of the invasive tree Ailanthus altissima in riparian corridors by changing the germination rate and velocity and by providing the option of a new pathway of vegetative propagation. We analyzed the potential of different types of propagules (fruits that have floated or been submerged, current- and second-year stem fragments) to establish new individuals after contact with water for 0, 3, 10, and 20 days. Length and type of seed contact with water led to divergent germination responses. Seeds that had floated for 3 days had an increased level of seed germination (87%), while a 20-day stay in water water-curbed germination to 32% compared to 53% in control. After floatation, the maximum number of emerged seedlings was achieved more than 3 weeks earlier than in all other treatments. In general, the germination was enhanced in floating compared to submerged fruits. Experiments with stem fragments revealed the option of a novel pathway for long-distance dispersal in river corridors: Except for stem fragments that floated for 20 days, 33–75% of buried stem fragments produced adventitious shoots, 10% also set roots. The results suggest that both generative and vegetative propagules of A. altissima can be dispersed at regional scales in river corridors. Hence, water as an additional dispersal vector is expected to enhance invasions by species with wind-dispersed seeds. Our findings suggest the importance of control of initial colonizations in riparian habitats and emphasize the need to include consequences of secondary dispersal when modeling the spread of invasive species.
- Subjects
VEGETATIVE propagation; SIMAROUBACEAE; PLANT species; BIOLOGICAL invasions; INTRODUCED plants; PLANT physiology
- Publication
Plant Ecology, 2008, Vol 198, Issue 2, p241
- ISSN
1385-0237
- Publication type
Academic Journal
- DOI
10.1007/s11258-008-9398-x