EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Controllable functionalization and wettability transition of graphene-based films by an atomic oxygen strategy.

Authors

Yi, Min; Zhang, Wen; Shen, Zhigang; Zhang, Xiaojing; Zhao, Xiaohu; Zheng, Yiting; Ma, Shulin

Abstract

Though chemical modification of graphene based on Hummers method has been most widely used to tailor its properties and interfacial characteristics, a method which could achieve definitive and controllable groups and properties is still highly required. Here, we demonstrate a high-vacuum oxidation strategy by atomic oxygen (AO) and investigate the AO induced functionalization and wettability transition in films made from basal-defect- and oxide-free graphene dispersions. These graphene-based films are neither graphene nor graphite, but graphene blocks constituted by numerous randomly stacked graphene flakes. It is found that AO induced functionalization of these films through the formation of epoxy groups, sp configuration, ether, and double and triple C-O groups. The films turn to be hydrophilic after exposed to AO. The contact angle increases with AO exposure time. This phenomenon is attributed to the lower surface roughness induced by collision and/or edge erosion of energetic ions to the film surface and is further explained by the Wenzel model. The demonstrated strategy can overcome limitations of Hummers method, provide possibility to gain functionalization and wettability transition in liquid-phase exfoliated basal-defect- and oxide-free graphene in the dry environment, and may extend the study and application of this material in spacecraft in low earth orbit.

Subjects

WETTING; GRAPHENE; THIN films; TRANSITION state theory (Chemistry); OXYGEN; INTERFACIAL resistance; VACUUM

Publication

Journal of Nanoparticle Research, 2013, Vol 15, Issue 8, p1

ISSN

1388-0764

Publication type

Academic Journal

DOI

10.1007/s11051-013-1811-2

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved