The significance of double-diffusivity convection and an inclined magnetic field on peristaltic propulsion of fourth-grade nanofluids through an inclined asymmetric channel is the focus of this study. A mathematical model of a fourth-grade nanofluid is presented, by considering a tilted magnetic field and double-diffusivity convection. The highly nonlinear partial differential equations (PDE's) are simplified with the lubrication methodology. Numerical technique is used to solve the coupled and highly nonlinear PDE's. To examine the impact of varying physical characteristics like Brownian motion, thermophoresis, Hartmann number, nanoparticle Grashof number, slip parameters and trapping on flow quantities, numerical and graphical results are provided. It is acquired that when Brownian motion is increased, the pressure gradient drops; however, when the thermophoresis parameter is increased, the pressure gradient boosts. It is also notable that the profile of velocity resembles a parabolic form and maximum velocity retain at channel's center.