EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Extracting ligands from receptors by reversed targeted molecular dynamics.

Authors

Wolf, Romain

Abstract

Short targeted MD trajectories are used to expel ligands from binding sites. The expulsion is governed by a linear increase of the target RMSD value, growing from zero to an arbitrary chosen final RMSD that forces the ligand to a selected distance outside of the receptor. The RMSD lag (i.e., the difference between the imposed and the actual RMSD) can be used to follow barriers encountered by the ligand during its way out of the receptor. The force constant used for the targeted MD can transform the RMSD lag into a strain energy. Integration of the (time-dependent) strain energy over time yields a value with the dimensions of 'action' (i.e, energy multiplied by time) and can serve as a measure for the overall effort required to extract the ligand from its binding site. Possibilities to compare (numerically and graphically) the randomly detected exit pathways are discussed. As an example, the method is tested on the exit of bisphenol A from the human estrogen-related receptor $$\gamma$$ and of GW0072 from the peroxysome proliferator activated receptor.

Subjects

MOLECULAR dynamics; LIGANDS (Biochemistry); NUCLEAR receptors (Biochemistry); CELL proliferation; STRAIN energy

Publication

Journal of Computer-Aided Molecular Design, 2015, Vol 29, Issue 11, p1025

ISSN

0920-654X

Publication type

Academic Journal

DOI

10.1007/s10822-015-9863-2

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved