The convection of an isothermally incompressible fluid in a horizontal layer with free undeformable boundaries kept at a constant temperature is considered. Under the fairly common assumptions of the temperature dependence of the specific volume, it is shown that the monotonicity principle holds and that the spectrum of critical Rayleigh numbers is countable and prime. Models with linear and quadratic temperature dependences of the specific volume are given as examples. The results on the spectrum of the critical Rayleigh numbers are also valid for some other boundary conditions.