We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Predicting particulate matter (PM10) levels in Morocco: a 5-day forecast using the analog ensemble method.
- Authors
Houdou, Anass; Khomsi, Kenza; Delle Monache, Luca; Hu, Weiming; Boutayeb, Saber; Belyamani, Lahcen; Abdulla, Fayez; Al-Delaimy, Wael K.; Khalis, Mohamed
- Abstract
The accurate prediction of particulate matter d < 10 μ m ( PM 10 ) levels, an indicator of natural pollutants such as those resulting from dust storms, is crucial for public health and environmental planning. This study aims to provide accurate forecasts of PM 10 over Morocco for 5 days. The analog ensemble (AnEn) and the bias correction (AnEnBc) techniques were employed to post-process PM 10 forecasts produced by the Copernicus Atmosphere Monitoring Service (CAMS) global atmospheric composition forecasts, using CAMS reanalysis data as a reference. The results show substantial prediction improvements: the root mean squared error (RMSE) decreased from 63.83 μ g / m 3 in the original forecasts to 44.73 μ g / m 3 with AnEn and AnEnBc, while the mean absolute error (MAE) reduced from 36.70 to 24.30 μ g / m 3 . Additionally, the coefficient of determination ( R 2 ) increased more than twofold from 29.11 to 65.18%, and the Pearson correlation coefficient increased from 0.61 to 0.82. The integrating reanalysis data and the utilization of the AnEn substantially improved the accuracy of PM 10 5-day forecasting in Morocco. This is the first application of this approach in Morocco and the Middle East and North Africa (MENA) and has the potential for translation into early and more accurate warnings of PM 10 pollution events. The application of such approaches in environmental policies and public health decision-making can minimize the health impacts of air pollution.
- Subjects
MEDICAL forecasting; STANDARD deviations; AIR pollution; PUBLIC health; PEARSON correlation (Statistics)
- Publication
Environmental Monitoring & Assessment, 2025, Vol 197, Issue 1, p1
- ISSN
0167-6369
- Publication type
Academic Journal
- DOI
10.1007/s10661-024-13434-z