We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Seismic response of nonlinear soil-structure interaction systems through the Preisach formalism: the Messina Bell Tower case study.
- Authors
Cacciola, P.; Caliò, I.; Fiorini, N.; Occhipinti, G.; Spina, D.; Tombari, A.
- Abstract
In this paper the seismic response of linear behaving structures resting on compliant soil is addressed through the application of the Preisach formalism to capture the soil nonlinearities. The novel application of the Preisach model of hysteresis for nonlinear soil-structure interaction problems is explored through the study of the seismic response of a real structure. Through a harmonic balance procedure, furthermore, simplified nonlinear springs and dashpots are derived in closed form for a ready and accurate evaluation of the nonlinear soil-structure interaction response. The selected case study is the bell tower of the Messina Cathedral in Italy. The Bell Tower hosts the largest and most complex mechanical and astronomical clock in the world and it has been recently equipped by a permanent seismic monitoring system. A pertinent finite element (FE) model including the superstructure and the soil underneath, has been defined using authentic drawings and engineering design reports. The modal properties of the FE model have been compared with the experimental ones, identified from environmental noise recorded through the seismic monitoring system. Furthermore, the FE model has been validated by means of acceleration time histories recorded at different floors during two independent seismic events. A nonlinear incremental dynamic analysis of the Bell Tower has been also performed. The seismic response obtained by the complete FE analysis, has been compared with the proposed Preisach lumped parameter model, assembled with nonlinear springs and nonlinear dashpots. The results are well in agreement, offering an alternative promising strategy for the nonlinear soil-structure interaction studies.
- Subjects
ITALY; SOIL-structure interaction; COMPLIANT platforms; ASTRONOMICAL clocks; ENGINEERING design; SEISMIC response; ENGINEERING drawings
- Publication
Bulletin of Earthquake Engineering, 2022, Vol 20, Issue 7, p3485
- ISSN
1570-761X
- Publication type
Academic Journal
- DOI
10.1007/s10518-021-01268-w