EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Formation of intermetallics during the metallization of model nuclear fuel based on uranium dioxide containing oxides of rare earth metals and palladium.

Authors

Shishkin, A. V.; Shishkin, V. Yu.; Mushnikov, P. N.; Zaikov, Yu. P.

Abstract

The paper considers the reduction of rare earth metal (REM) oxides and uranium dioxide with lithium produced during the electrolysis of LiCl–Li2O melt with the formation of intermetallics and palladium. At a cathode potential of 0.6–0.8 V relative to , intermetallic compounds of CePd3, NdPd3, and UPd4 compositions are formed. The formation current for REM intermetallic compounds is significantly greater than that for uranium. Therefore, when they are co-present in samples, REM intermetallics are formed first, followed by intermetallic compounds of uranium in the presence of palladium unbound by REM alloys. This is due to the significantly greater solubility of neodymium and cerium oxides in the salt melt compared to uranium dioxide. At a cathode potential close to or equal to the potential of liquid lithium, intermetallics with palladium, lanthanides, and uranium Ln3Pd4, LnPd, UPd3 are formed. In this case, an important role is played by the ability of lithium and palladium to form alloys that are liquid at 650 °C.

Subjects

RARE earth oxides; RARE earth metals; INTERMETALLIC compounds; URANIUM compounds; PALLADIUM alloys; URANIUM

Publication

Atomic Energy, 2024, Vol 136, Issue 3/4, p194

ISSN

1063-4258

Publication type

Academic Journal

DOI

10.1007/s10512-024-01151-2

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved