We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Origin of Neoproterozoic ophiolitic peridotites in south Eastern Desert, Egypt, constrained from primary mantle mineral chemistry.
- Authors
Khedr, Mohamed; Arai, Shoji
- Abstract
The ophiolitic peridotites in the Wadi Arais area, south Eastern Desert of Egypt, represent a part of Neoproterozoic ophiolites of the Arabian-Nubian Shield (ANS). We found relics of fresh dunites enveloped by serpentinites that show abundances of bastite after orthopyroxene, reflecting harzburgite protoliths. The bulk-rock chemistry confirmed the harzburgites as the main protoliths. The primary mantle minerals such as orthopyroxene, olivine and chromian spinel in Arais serpentinites are still preserved. The orthopyroxene has high Mg# [=Mg/(Mg + Fe)], ~0.923 on average. It shows intra-grain chemical homogeneity and contains, on average, 2.28 wt.% A1O, 0.88 wt.% CrO and 0.53 wt.% CaO, similar to primary orthopyroxenes in modern forearc peridotites. The olivine in harzburgites has lower Fo (93−94.5) than that in dunites (Fo−Fo). The Arais olivine is similar in NiO (0.47 wt.% on average) and MnO (0.08 wt.% on average) contents to the mantle olivine in primary peridotites. This olivine is high in Fo content, similar to Mg-rich olivines in ANS ophiolitic harzburgites, because of its residual origin. The chromian spinel, found in harzburgites, shows wide ranges of Cr#s [=Cr/(Cr + Al)], 0.46−0.81 and Mg#s, 0.34−0.67. The chromian spinel in dunites shows an intra-grain chemical homogeneity with high Cr#s (0.82−0.86). The chromian spinels in Arais peridotites are low in TiO, 0.05 wt.% and Y [= Fe/(Cr + Al + Fe)], ~0.06 on average. They are similar in chemistry to spinels in forearc peridotites. Their compositions associated with olivine's Fo suggest that the harzburgites are refractory residues after high-degree partial melting (mainly ~25−30 % partial melting) and dunites are more depleted, similar to highly refractory peridotites recovered from forearcs. This is in accordance with the partial melting (>20 % melt) obtained by the whole-rock AlO composition. The Arais peridotites have been possibly formed in a sub-arc setting (mantle wedge), where high degrees of partial melting were available during subduction and closing of the Mozambique Ocean, and emplaced in a forearc basin. Their equilibrium temperature based on olivine−spinel thermometry ranges from 650 to 780 °C, and their oxygen fugacity is high (Δlog ƒO = 2.3 to 2.8), which is characteristic of mantle-wedge peridotites. The Arais peridotites are affected by secondary processes forming microinclusions inside the dunitic olivine, abundances of carbonates and talc flakes in serpentinites. These microinclusions have been formed by reaction between trapped fluids and host olivine in a closed system. Lizardite and chrysotile, based on Raman analyses, are the main serpentine minerals with lesser antigorite, indicating that serpentines were possibly formed under retrograde metamorphism during exhumation and near the surface at low T (<400 °C).
- Subjects
ARABIAN-Nubian Shield; EGYPT; DESERTS; PROTEROZOIC stratigraphic geology; GEOCHEMISTRY; MINERALOGY; OPHIOLITES; PERIDOTITE; CRUST of the earth
- Publication
Mineralogy & Petrology, 2013, Vol 107, Issue 5, p807
- ISSN
0930-0708
- Publication type
Academic Journal
- DOI
10.1007/s00710-012-0213-y