We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
A tree-BLSTM-based recognition system for online handwritten mathematical expressions.
- Authors
Zhang, Ting; Mouchère, Harold; Viard-Gaudin, Christian
- Abstract
Long short-term memory networks (LSTM) achieve great success in temporal dependency modeling for chain-structured data, such as texts and speeches. An extension toward more complex data structures as encountered in 2D graphic languages is proposed in this work. Specifically, we address the problem of handwritten mathematical expression recognition, using a tree-based BLSTM architecture allowing the direct labeling of nodes (symbol) and edges (relationship) from a graph modeling the input strokes. One major difference with the traditional approaches is that there is no explicit segmentation, recognition and layout extraction steps but a unique trainable system that produces directly a stroke label graph describing a mathematical expression. The proposed system, considering no grammar, achieves competitive results in online math expression recognition domain.
- Subjects
GRAPH labelings; OBJECT recognition (Computer vision); SHORT-term memory; DATA structures; GEOMETRIC vertices
- Publication
Neural Computing & Applications, 2020, Vol 32, Issue 9, p4689
- ISSN
0941-0643
- Publication type
Academic Journal
- DOI
10.1007/s00521-018-3817-2