EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

ATP depletion induces translocation of STIM1 to puncta and formation of STIM1–ORAI1 clusters: translocation and re-translocation of STIM1 does not require ATP.

Authors

Chvanov, Michael; Walsh, Ciara M.; Haynes, Lee P.; Voronina, Svetlana G.; Lur, Gyorgy; Gerasimenko, Oleg V.; Barraclough, Roger; Rudland, Philip S.; Petersen, Ole H.; Burgoyne, Robert D.; Tepikin, Alexei V.

Abstract

Depletion of the endoplasmic reticulum (ER) calcium store triggers translocation of stromal interacting molecule one (STIM1) to the sub-plasmalemmal region and formation of puncta—structures in which STIM1 interacts and activates calcium channels. ATP depletion induced the formation of STIM1 puncta in PANC1, RAMA37, and HeLa cells. The sequence of events triggered by inhibition of ATP production included a rapid decline of ATP, depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and a slow calcium leak from the ER followed by formation of STIM1 puncta. STIM1 puncta induced by ATP depletion were co-localized with clusters of ORAI1 channels. STIM1–ORAI1 clusters that developed as a result of ATP depletion were very poor mediators of Ca2 influx. Re-translocation of STIM1 from puncta back to the ER was observed during total ATP depletion. We can therefore conclude that STIM1 translocation and re-translocation as well as formation of STIM1–ORAI1 clusters occur in an ATP-independent fashion and under conditions of PI(4,5)P2 depletion.

Subjects

ADENOSINE triphosphate; CANCER cells; ENDOPLASMIC reticulum; UTERINE cancer; CALCIUM

Publication

Pflügers Archiv: European Journal of Physiology, 2008, Vol 457, Issue 2, p505

ISSN

0031-6768

Publication type

Academic Journal

DOI

10.1007/s00424-008-0529-y

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved