We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Internally consistent geothermometers for garnet peridotites and pyroxenites.
- Authors
Nimis, Paolo; Grütter, Herman
- Abstract
Mutual relationships among temperatures estimated with the most widely used geothermometers for garnet peridotites and pyroxenites demonstrate that the methods are not internally consistent and may diverge by over 200°C even in well-equilibrated mantle xenoliths. The Taylor (N Jb Min Abh 172:381–408, 1998) two-pyroxene (TA98) and the Nimis and Taylor (Contrib Mineral Petrol 139:541–554, 2000) single-clinopyroxene thermometers are shown to provide the most reliable estimates, as they reproduce the temperatures of experiments in a variety of simple and natural peridotitic systems. Discrepancies between these two thermometers are negligible in applications to a wide variety of natural samples (≤30°C). The Brey and Köhler (J Petrol 31:1353–1378, 1990) Ca-in-Opx thermometer shows good agreement with TA98 in the range 1,000–1,400°C and a positive bias at lower T (up to 90°C, on average, at TTA98 = 700°C). The popular Brey and Köhler (J Petrol 31:1353–1378, 1990) two-pyroxene thermometer performs well on clinopyroxene with Na contents of ~0.05 atoms per 6-oxygen formula, but shows a systematic positive bias with increasing NaCpx ( 150°C at NaCpx = 0.25). Among Fe–Mg exchange thermometers, the Harley (Contrib Mineral Petrol 86:359–373, 1984) orthopyroxene–garnet and the recent Wu and Zhao (J Metamorphic Geol 25:497–505, 2007) olivine–garnet formulations show the highest precision, but systematically diverge (up to ca. 150°C, on average) from TA98 estimates at T far from 1,100°C and at T 3 partitioning systematics and suggest localized and lateral variations in mantle redox conditions, in broad agreement with existing oxybarometric data. Kinetic decoupling of Ca–Mg and Fe–Mg exchange equilibria caused by transient heating appears to be common, but not ubiquitous, near the base of the lithosphere.
- Subjects
PERIDOTITE; PYROXENITE; THERMOMETERS; INCLUSIONS in igneous rocks; ROCK-forming minerals
- Publication
Contributions to Mineralogy & Petrology, 2010, Vol 159, Issue 3, p411
- ISSN
0010-7999
- Publication type
Academic Journal
- DOI
10.1007/s00410-009-0455-9