Purpose: To examine and compare longitudinal changes of cortical glucose metabolism in amnestic and non-amnestic sporadic forms of early-onset Alzheimer's disease and assess potential associations with neuropsychological performance over a 3-year period time. Methods: Eighty-two participants meeting criteria for early-onset (18F-FDG PET. Vertex-wise partial volume-corrected glucose metabolic maps across the entire cortical surface were generated and longitudinally assessed together with the neuropsychological scores using linear mixed-effects modeling as a function of amnestic and non-amnestic sporadic forms of early-onset Alzheimer's disease. Results: Similar evolution patterns of glucose metabolic decline between amnestic and non-amnestic forms were observed in widespread neocortical cortices. However, only non-amnestic forms appeared to have a greater reduction of glucose metabolism in lateral orbitofrontal and bilateral medial temporal cortices associated with more severe declines of neuropsychological performance compared with amnestic forms. Furthermore, results suggest that glucose metabolic decline in amnestic forms would progress along an anterior-to-posterior axis, whereas glucose metabolic decline in non-amnestic forms would progress along a posterior-to-anterior axis. Conclusions: We found differences in spatial distribution and temporal trajectory of glucose metabolic decline between amnestic and non-amnestic early-onset Alzheimer's disease groups, suggesting that one might want to consider treating the two forms of the disease as two separate entities.