We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Characterization of 1,4-dioxane degrading microbial community enriched from uncontaminated soil.
- Authors
Tang, Yuyin; Wang, Mian; Lee, Cheng-Shiuan; Venkatesan, Arjun K.; Mao, Xinwei
- Abstract
1,4-Dioxane is a contaminant of emerging concern that has been commonly detected in groundwater. In this study, a stable and robust 1,4-dioxane degrading enrichment culture was obtained from uncontaminated soil. The enrichment was capable to metabolically degrade 1,4-dioxane at both high (100 mg L−1) and environmentally relevant concentrations (300 μg L−1), with a maximum specific 1,4-dioxane degradation rate (qmax) of 0.044 ± 0.001 mg dioxane h−1 mg protein−1, and 1,4-dioxane half-velocity constant (Ks) of 25 ± 1.6 mg L−1. The microbial community structure analysis suggested Pseudonocardia species, which utilize the dioxane monooxygenase for metabolic 1,4-dioxane biodegradation, were the main functional species for 1,4-dioxane degradation. The enrichment culture can adapt to both acidic (pH 5.5) and alkaline (pH 8) conditions and can recover degradation from low temperature (10°C) and anoxic (DO −1) conditions. 1,4-Dioxane degradation of the enrichment culture was reversibly inhibited by TCE with concentrations higher than 5 mg L−1 and was completely inhibited by the presence of 1,1-DCE as low as 1 mg L−1. Collectively, these results demonstrated indigenous stable and robust 1,4-dioxane degrading enrichment culture can be obtained from uncontaminated sources and can be a potential candidate for 1,4-dioxane bioaugmentation at environmentally relevant conditions. Key points: •1,4-Dioxane degrading enrichment was obtained from uncontaminated soil. • The enrichment culture could degrade 1,4-dioxane to below 10 μg L−1. •Low Ksand low cell yield of the enrichment benefit its application in bioremediation.
- Subjects
MICROBIAL communities; DIOXANE; MONOOXYGENASES; LOW temperatures; BIOREMEDIATION; BIODEGRADATION
- Publication
Applied Microbiology & Biotechnology, 2023, Vol 107, Issue 2/3, p955
- ISSN
0175-7598
- Publication type
Academic Journal
- DOI
10.1007/s00253-023-12363-0