EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Non-classifiability of ergodic flows up to time change.

Authors

Gerber, Marlies; Kunde, Philipp

Abstract

A time change of a flow { T t } , t ∈ R , is a reparametrization of the orbits of the flow such that each orbit is mapped to itself by an orientation-preserving homeomorphism of the parameter space. If a flow { S t } is isomorphic to a flow obtained by a reparametrization of a flow { T t } , then we say that { S t } and { T t } are isomorphic up to a time change. For ergodic flows { S t } and { T t } , Kakutani showed that this happens if and only if the two flows have Kakutani equivalent transformations as cross-sections. We prove that the Kakutani equivalence relation on ergodic invertible measure-preserving transformations of a standard non-atomic probability space is not a Borel set. This shows in a precise way that classification of ergodic transformations up to Kakutani equivalence is impossible. In particular, our results imply the non-classifiability of ergodic flows up to isomorphism after a time change. Moreover, we obtain anti-classification results under isomorphism for ergodic invertible transformations of a sigma-finite measure space. We also obtain anti-classification results under Kakutani equivalence for ergodic area-preserving smooth diffeomorphisms of the disk, annulus, and 2-torus, as well as real-analytic diffeomorphisms of the 2-torus. Our work generalizes the anti-classification results under isomorphism for ergodic transformations obtained by Foreman, Rudolph, and Weiss.

Subjects

ISOMORPHISM (Mathematics); ORBITS (Astronomy); DIFFEOMORPHISMS; CLASSIFICATION; PROBABILITY theory

Publication

Inventiones Mathematicae, 2025, Vol 239, Issue 2, p527

ISSN

0020-9910

Publication type

Academic Journal

DOI

10.1007/s00222-024-01312-x

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved