We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Rapid plasticity follows whisker pairing in barrel cortex of the awake rat.
- Authors
Sellien, Heike; Ebner, Ford F.
- Abstract
Synaptic plasticity can be induced easily throughout life in the rodent somatic sensory cortex. Trimming all but two whiskers on one side of an adult rat’s face, called ‘whisker pairing’, causes the active (intact) whiskers to develop a stronger drive on cortical cells in their respective barrel columns, while inactive (trimmed) whisker efficacy is down-regulated. To date, this type of activity-dependent plasticity has been induced by trimming all but two whiskers, letting the rats explore their environment from 1 day to 1 month, after which cortical responses were analyzed physiologically under anesthesia. Such studies have enhanced our understanding of cortical plasticity, but the anesthesia complicates the examination of changes that occur in the first few hours after whisker trimming. Here we assayed the short-term changes that occur in alert, active animals over a period of hours after whisker trimming. The magnitude of barrel cortex evoked responses was measured in response to stimulation of the cut and paired whiskers of rats under several conditions: (a) whisking in air (control), (b) active whisking of an object by the rat, and (c) epochs of passive whisker stimulation to identify the onset of whisker pairing plasticity changes in cortex. The main difference between whisking in air without contact and passive whisker stimulation is that the former condition induces an increased response to stimulation of inactive cut whiskers, while the latter condition increases the responses to the stimulated whiskers. The results support the conclusion that whisker pairing plasticity in barrel cortex occurs within 4 h after whisker trimming in an awake, alert animal.
- Subjects
NEUROPLASTICITY; MATERIAL plasticity; WHISKERS; SENSORY evaluation; NEUROPHYSIOLOGY
- Publication
Experimental Brain Research, 2007, Vol 177, Issue 1, p1
- ISSN
0014-4819
- Publication type
Academic Journal
- DOI
10.1007/s00221-006-0644-y