We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Postural responses triggered by multidirectional leg lifts and surface tilts.
- Authors
Hughey, Lucinda K.; Fung, Joyce
- Abstract
The aim of the present study was to investigate the relationship between proactive and reactive components of postural control. We contrasted the kinematic and electromyographic (EMG) responses to multidirectional voluntary leg lifts with those elicited by unexpected surface tilts. In particular, we addressed the role of trunk stabilization following either a voluntary or forced weight shift from double to single limb support. Nine young female subjects stood with a standing posture of 45° toe-out and their arms abducted to shoulder level. On the experimenter’s signal, subjects either (1) lifted one leg as fast as possible in one of six directions (R/L side, R/L diagonal front, R/L diagonal back) to a height of 45° or (2) maintained standing as the support surface tilted at a rate of 53°/s to a height of 10° in one of six directions (R/L-up, R/L diagonal toes-up, R/L diagonal toes-down). For both tasks, our results showed that the center of pressure (COP) displacement began before or in conjunction with displacement of the center of mass (COM), after which the COP oscillated about the horizontal projection of the COM. In addition, the muscles were recruited in a distal-to-proximal sequence, either in anticipation of the voluntary leg lift or in response to the sudden surface tilt. Thus, the COP was being used dynamically to control displacement of the COM. The axial postural strategy comprising head, trunk, and pelvis movements was quantified by means of principal component analysis. More than 95% of the variance in the data could be described by the first two eigenvectors, which revealed specific coordination patterns dominated by pelvis rotation in one direction and head/trunk rotation in the opposite direction. Unexpected surface tilting elicited an automatic response strategy that focused on controlling the orientation of the head and trunk with respect to the vertical gravity vector while trunk verticality was compromised for movement generation and the recovery of postural equilibrium during leg lifting. In conclusion, regardless of the type (voluntary versus involuntary) or direction of perturbation, the strategy employed by the central nervous system to control the body COM displacement concerns mainly trunk stabilization.
- Subjects
POSTURE disorders; ORTHOSTATIC hypotension; CENTRAL nervous system; NEUROSCIENCES; LEG diseases; ELECTROMYOGRAPHY
- Publication
Experimental Brain Research, 2005, Vol 165, Issue 2, p152
- ISSN
0014-4819
- Publication type
Academic Journal
- DOI
10.1007/s00221-005-2295-9