We study a free boundary problem on the lattice whose scaling limit is a harmonic free boundary problem with a discontinuous Hamiltonian. We find an explicit formula for the Hamiltonian, prove that the solutions are unique, and prove that the limiting free boundary has a facets in every rational direction. Our choice of problem presents difficulties that require the development of a new uniqueness proof for certain free boundary problems. The problem is motivated by physical experiments involving liquid drops on patterned solid surfaces.