EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

An Initial and Boundary Value Problem Modeling of Fish-like Swimming.

Authors

San Martín, Jorge; Scheid, Jean-François; Takahashi, Takéo; Tucsnak, Marius; Bressan, A.

Abstract

In this paper we consider an initial and boundary value problem that models the self-propelled motion of solids in a bidimensional viscous incompressible fluid. The self-propelling mechanism, consisting of appropriate deformations of the solids, is a simplified model of the propulsion mechanism of fish-like swimmers. The governing equations consist of the Navier–Stokes equations for the fluid, coupled to Newton’s laws for the solids. Since we consider the case in which the fluid–solid system fills a bounded domain we have to tackle a free boundary value problem. The main theoretical result in the paper asserts the global existence and uniqueness (up to possible contacts) of strong solutions of this problem. The second novel result of this work is the provision of a numerical method for the fluid–solid system. This method provides a simulation of the simultaneous displacement of several swimmers and is tested on several examples.

Subjects

STOKES equations; NAVIER-Stokes equations; PARTIAL differential equations; FLUID dynamics; VISCOUS flow; SOLID state physics

Publication

Archive for Rational Mechanics & Analysis, 2008, Vol 188, Issue 3, p429

ISSN

0003-9527

Publication type

Academic Journal

DOI

10.1007/s00205-007-0092-2

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved