Works matching IS 14322994 AND DT 2013 AND VI 78 AND IP 2
1
- Mathematical Methods of Operations Research, 2013, v. 78, n. 2, p. 243, doi. 10.1007/s00186-013-0442-9
- Article
2
- Mathematical Methods of Operations Research, 2013, v. 78, n. 2, p. 149, doi. 10.1007/s00186-013-0437-6
- Grundel, Soesja;
- Borm, Peter;
- Hamers, Herbert
- Article
3
- Mathematical Methods of Operations Research, 2013, v. 78, n. 2, p. 259, doi. 10.1007/s00186-013-0443-8
- Faggian, Silvia;
- Grosset, Luca
- Article
4
- Mathematical Methods of Operations Research, 2013, v. 78, n. 2, p. 171, doi. 10.1007/s00186-013-0438-5
- Kleppe, John;
- Borm, Peter;
- Hendrickx, Ruud
- Article
5
- Mathematical Methods of Operations Research, 2013, v. 78, n. 2, p. 187, doi. 10.1007/s00186-013-0439-4
- Béal, Sylvain;
- Rémila, Eric;
- Solal, Philippe
- Article
6
- Mathematical Methods of Operations Research, 2013, v. 78, n. 2, p. 203, doi. 10.1007/s00186-013-0440-y
- Liu, Qian;
- Wang, Changyu;
- Yang, Xinmin
- Article
7
- Mathematical Methods of Operations Research, 2013, v. 78, n. 2, p. 285, doi. 10.1007/s00186-013-0444-7
- Khmelnitskaya, Anna;
- Sudhölter, Peter
- Article
8
- Mathematical Methods of Operations Research, 2013, v. 78, n. 2, p. 221, doi. 10.1007/s00186-013-0441-x
- Marbán, Sebastián;
- Ven, Peter;
- Borm, Peter;
- Hamers, Herbert
- Article