The increasing interest in the modeling of metal-forming processes in recent years has brought the development of different analytical and/or numerical technique. However, due to the complexity nature of the problem, most of the attempts are made with plain strain assumptions. Among the different techniques used, the upper bound method is a convenient tool for evaluating the rate of work in processes involving predominantly plastic deformation of rigid/perfectly plastic material. The present study is an endeavor to remodel and apply the spatial elementary rigid region technique for analyzing extrusion of angle-section bars from round billets through the linearly converging die. Optimized values of the nondimensional average extrusion pressure at various area reductions have been computed and compared with experimental results. It is observed that the proposed technique can be used effectively with adequate accuracy to predict the optimal die geometry which requires a minimal forming stress at different reduction of areas and friction conditions.