In this paper, we investigate the accuracy of a high-order discontinuous Galerkin discretization for the coarse resolution simulation of turbulent flow. We show that a low-order approximation exhibits unacceptable numerical discretization errors, whereas a naive application of high-order discretizations in those situations is often unstable due to aliasing. Thus, for high-order simulations of underresolved turbulence, proper stabilization is necessary for a successful computation. Two different mechanisms are chosen, and their impact on the accuracy of underresolved high-order computations of turbulent flows is investigated. Results of these approximations for the Taylor-Green Vortex problem are compared to direct numerical simulation results from literature. Our findings show that the superior discretization properties of high-order approximations are retained even for these coarsely resolved computations.