EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Estimating multilevel regional variation in excess mortality of cancer patients using integrated nested Laplace approximation.

Authors

Seppä, Karri; Rue, Håvard; Hakulinen, Timo; Läärä, Esa; Sillanpää, Mikko J.; Pitkäniemi, Janne

Abstract

Models of excess mortality with random effects were used to estimate regional variation in relative or net survival of cancer patients. Statistical inference for these models based on the Markov chain Monte Carlo (MCMC) methods is computationally intensive and, therefore, not feasible for routine analyses of cancer register data. This study assessed the performance of the integrated nested Laplace approximation (INLA) in monitoring regional variation in cancer survival. Poisson regression model of excess mortality including both spatially correlated and unstructured random effects was fitted to the data of patients diagnosed with ovarian and breast cancer in Finland during 1955-2014 with follow up from 1960 through 2014 by using the period approach with five-year calendar time windows. We estimated standard deviations associated with variation (i) between hospital districts and (ii) between municipalities within hospital districts. Posterior estimates based on the INLA approach were compared to those based on the MCMC simulation. The estimates of the variation parameters were similar between the two approaches. Variation within hospital districts dominated in the total variation between municipalities. In 2000-2014, the proportion of the average variation within hospital districts was 68% (95% posterior interval: 35%-93%) and 82% (60%-98%) out of the total variation in ovarian and breast cancer, respectively. In the estimation of regional variation, the INLA approach was accurate, fast, and easy to implement by using the R-INLA package.

Publication

Statistics in Medicine, 2019, Vol 38, Issue 5, p778

ISSN

0277-6715

Publication type

Academic Journal

DOI

10.1002/sim.8010

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved