We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Field drift correction of proton resonance frequency shift temperature mapping with multichannel fast alternating nonselective free induction decay readouts.
- Authors
Ferrer, Cyril J.; Bartels, Lambertus W.; Velden, Tijl A.; Grüll, Holger; Heijman, Edwin; Moonen, Chrit T. W.; Bos, Clemens
- Abstract
Purpose: To demonstrate that proton resonance frequency shift MR thermometry (PRFS‐MRT) acquisition with nonselective free induction decay (FID), combined with coil sensitivity profiles, allows spatially resolved B0 drift‐corrected thermometry. Methods: Phantom experiments were performed at 1.5T and 3T. Acquisition of PRFS‐MRT and FID were performed during MR‐guided high‐intensity focused ultrasound heating. The phase of the FIDs was used to estimate the change in angular frequency δωdrift per coil element. Two correction methods were investigated: (1) using the average δωdrift over all coil elements (0th‐order) and (2) using coil sensitivity profiles for spatially resolved correction. Optical probes were used for independent temperature verification. In‐vivo feasibility of the methods was evaluated in the leg of 1 healthy volunteer at 1.5T. Results: In 30 minutes, B0 drift led to an apparent temperature change of up to –18°C and –98°C at 1.5T and 3T, respectively. In the sonicated area, both corrections had a median error of 0.19°C at 1.5T and –0.54°C at 3T. At 1.5T, the measured median error with respect to the optical probe was –1.28°C with the 0th‐order correction and improved to 0.43°C with the spatially resolved correction. In vivo, without correction the spatiotemporal median of the apparent temperature was at –4.3°C and interquartile range (IQR) of 9.31°C. The 0th‐order correction had a median of 0.75°C and IQR of 0.96°C. The spatially resolved method had the lowest median at 0.33°C and IQR of 0.80°C. Conclusion: FID phase information from individual receive coil elements allows spatially resolved B0 drift correction in PRFS‐based MRT.
- Subjects
PROTON magnetic resonance; HIGH-intensity focused ultrasound; TEMPERATURE; THERMOMETRY
- Publication
Magnetic Resonance in Medicine, 2020, Vol 83, Issue 3, p962
- ISSN
0740-3194
- Publication type
Academic Journal
- DOI
10.1002/mrm.27985