EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Accelerating MR parameter mapping using sparsity-promoting regularization in parametric dimension.

Authors

Velikina, Julia V.; Alexander, Andrew L.; Samsonov, Alexey

Abstract

MR parameter mapping requires sampling along additional (parametric) dimension, which often limits its clinical appeal due to a several-fold increase in scan times compared to conventional anatomic imaging. Data undersampling combined with parallel imaging is an attractive way to reduce scan time in such applications. However, inherent SNR penalties of parallel MRI due to noise amplification often limit its utility even at moderate acceleration factors, requiring regularization by prior knowledge. In this work, we propose a novel regularization strategy, which uses smoothness of signal evolution in the parametric dimension within compressed sensing framework (p-CS) to provide accurate and precise estimation of parametric maps from undersampled data. The performance of the method was demonstrated with variable flip angle T1 mapping and compared favorably to two representative reconstruction approaches, image space-based total variation regularization and an analytical model-based reconstruction. The proposed p-CS regularization was found to provide efficient suppression of noise amplification and preservation of parameter mapping accuracy without explicit utilization of analytical signal models. The developed method may facilitate acceleration of quantitative MRI techniques that are not suitable to model-based reconstruction because of complex signal models or when signal deviations from the expected analytical model exist. Magn Reson Med 70:1263-1273, 2013. © 2012 Wiley Periodicals, Inc.

Publication

Magnetic Resonance in Medicine, 2013, Vol 70, Issue 5, p1263

ISSN

0740-3194

Publication type

Academic Journal

DOI

10.1002/mrm.24577

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved