EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives.

Authors

Yu, Yue; Wang, Changlei; Grice, Corey R.; Shrestha, Niraj; Chen, Jing; Zhao, Dewei; Liao, Weiqiang; Cimaroli, Alexander J.; Roland, Paul J.; Ellingson, Randy J.; Yan, Yanfa

Abstract

Formamidinium lead triiodide (FAPbI3) is considered as an alternative to methylammonium lead triiodide (MAPbI3) because of its lower band gap and better thermal stability. However, owing to the large size of FA cations, it is difficult to synthesize high-quality FAPbI3 thin films without the formation of an undesirable yellow phase. Smaller sized cations, such as MA and Cs, have been successfully used to suppress the formation of the yellow phase. Whereas FA and MA lead triiodide perovskite solar cells (PVSCs) have achieved power conversion efficiencies (PCEs) higher than 20 %, the PCEs of formamidinium and cesium lead triiodide (FA1− xCs xPbI3) PVSCs have been only approximately 16.5 %. Herein, we report our examination of the main factors limiting the PCEs of (FA1− xCs xPbI3) PVSCs. We find that one of the main limiting factors could be the small grain sizes (≈120 nm), which leads to relatively short carrier lifetimes. We further find that adding a small amount of lead thiocyanate [Pb(SCN)2] to the precursors can enlarge the grain size of (FA1− xCs xPbI3) perovskite thin films and significantly increase carrier lifetimes. As a result, we are able to fabricate (FA1− xCs xPbI3) PVSCs with significantly improved open-circuit voltages and fill factors and, therefore, enhanced PCEs. With an optimal 0.5 mol % Pb(SCN)2 additive, the average PCE is increased from 16.18±0.50 (13.45±0.78) % to 18.16±0.54 (16.86±0.63) % for planar FA0.8Cs0.2PbI3 PVSCs if measured under reverse (forward) voltage scans. The champion cell registers a PCE of 19.57 (18.12) % if measured under a reverse (forward) voltage scan, which is comparable to that of the best-performing MA-containing planar FA-based lead halide PVSCs.

Subjects

SOLAR cells; AMIDINES; CESIUM compounds; PEROVSKITE; LEAD compounds; THERMAL stability

Publication

ChemSusChem, 2016, Vol 9, Issue 23, p3288

ISSN

1864-5631

Publication type

Academic Journal

DOI

10.1002/cssc.201601027

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved