EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Heterostructure Induced S p‐Band Center Shift for Activating 1T‐MoS<sub>2</sub> Basal Plane towards Hydrogen Evolution Reaction.

Authors

Wang, Kaiwen; Xu, Shaonan; Yu, Kaifeng; Liu, Zhipeng; Yuan, Shisheng; Xiang, Lijuan; Zhang, Yuanhao; Li, Nan

Abstract

Despite the benefits of metallic conductivity and highly active edge Mo sites of 1T phase molybdenum disulfide (1T‐MoS2) as an electrocatalyst, its overall catalytic efficiency for hydrogen evolution reaction (HER) is still limited by the less active S sites on the basal plane with a considerable positive ΔGH*. As a result, activating the basal plane S atoms is a viable solution for increasing catalytic activity. In this work, we modulated the electronic structure of 1T‐MoS2 by constructing a heterostructure with CoS2 nanoparticles deposited on the 1T‐MoS2 basal plane. This heterostructure demonstrated excellent HER activity as well as robust stability. Theoretical calculations indicate that the bridge S atoms connecting 1T‐MoS2 and CoS2 have an up‐shifted p‐band center relative to the S atoms on the basal plane, so the ΔGH* of the bridge S atoms is optimized to thermal neutrality and the 1T‐MoS2 basal plane is activated with enhanced hydrogen evolution activity. This work provides a novel strategy for activating the basal plane S atoms of 1T‐MoS2.

Subjects

HYDROGEN evolution reactions; MOLYBDENUM disulfide; ELECTRONIC structure; CATALYTIC activity; COBALT sulfide

Publication

ChemNanoMat, 2022, Vol 8, Issue 11, p1

ISSN

2199-692X

Publication type

Academic Journal

DOI

10.1002/cnma.202200328

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved